Triple-Classification of Respiratory Sounds Using Optimized S-Transform and Deep Residual Networks
نویسندگان
چکیده
منابع مشابه
Wide and deep volumetric residual networks for volumetric image classification
3D shape models that directly classify objects from 3D information have become more widely implementable. Current state of the art models rely on deep convolutional and inception models that are resource intensive. Residual neural networks have been demonstrated to be easier to optimize and do not suffer from vanishing/exploding gradients observed in deep networks. Here we implement a residual ...
متن کاملClassification of Respiratory Sounds by Using an Artificial Neural Network
In this paper, a classification method for respiratory sounds (RSs) in patients with asthma and in healthy subjects is presented. Wavelet transform is applied to a window containing 256 samples. Elements of the feature vectors are obtained from the wavelet coefficients. The best feature elements are selected by using dynamic programming. Grow and Learn (GAL) neural network is used for the class...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کاملClassification of lung sounds using convolutional neural networks
In the field of medicine, with the introduction of computer systems that can collect and analyze massive amounts of data, many non-invasive diagnostic methods are being developed for a variety of conditions. In this study, our aim is to develop a non-invasive method of classifying respiratory sounds that are recorded by an electronic stethoscope and the audio recording software that uses variou...
متن کاملA Window Width Optimized S-Transform
Energy concentration of the S-transform in the time-frequency domain has been addressed in this paper by optimizing the width of the window function used. A new scheme is developed and referred to as a window width optimized S-transform. Two optimization schemes have been proposed, one for a constant window width, the other for time-varying window width. The former is intended for signals with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2903859